## [3+2] Cycloaddition Reactions of Cyclopropylmethylsilanes and α-Keto Aldehydes: Trans- and Cis-selective Formation of 2-Silylmethyltetrahydrofurans

Kohei Fuchibe, Yuji Aoki, and Takahiko Akiyama\* Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588

(Received January 12, 2005; CL-050054)

Cyclopropylmethylsilanes and  $\alpha$ -keto aldehydes underwent novel [3+2] cycloaddition reaction to afford 2-silylmethyl substituted tetrahydrofurans in good yields. Relative stereochemistries of the products were dependent on the reaction temperatures, *trans*- and *cis*-tetrahydrofurans were obtained stereoselectively at 0 °C and at -78 °C, respectively.

Tetrahydrofuran is one of the most important structures that constitute a large family of organic heterocycles. Although a variety of synthetic methods to approach the structures have been reported so far,<sup>1</sup> development of more facile and efficient methods is still desired owing to a wide variety and importance of substituted tetrahydrofurans.

In order to accomplish a facile construction of the tetrahydrofuran skeletons, we have formerly got interested in cycloaddition reactions because two chemical bonds are formed in a single operation. Allylsilanes and allylgermanes were found to undergo migrative [3+2] type cycloaddition reaction with  $\alpha$ -keto esters to afford 3-silylated tetrahydrofurans in a cis-selective manner.<sup>2</sup> These results clearly proved a great advantage of the cycloaddition approach for a facile and diastereoselective preparation of tetrahydrofurans and our attention was newly focused on a use of cyclopropylmethylsilanes<sup>3</sup> as C3 donors.<sup>4</sup> In this communication, we are going to describe a novel temperaturedependent trans- and cis-selective preparation of 2-silylmethylated tetrahydrofurans via [3+2] cycloaddition reactions of cyclopropylmethylsilanes with  $\alpha$ -keto aldehydes.

Table 1 shows our general survey over Lewis acids and sol-

 
 Table 1. Reaction of cyclopropylmethylsilane 1 with phenylglyoxal 2a

| $(i-\Pr)_3$ Si + H $\stackrel{O}{\longrightarrow}$ Ph $\stackrel{1.2 \text{ equiv.}}{\text{Lewis acid}}$ $(i-\Pr)_3$ Si $\stackrel{II}{\longrightarrow}$ Ph |                    |                    |                                                     |                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------|-------------------------|--|--|--|
|                                                                                                                                                             | 1                  | <b>2a</b> 1.5 eo   | quiv.                                               | trans-3a                |  |  |  |
| Run                                                                                                                                                         | Lewis acid         | Solvent            | Conditions                                          | $3a/\% (trans/cis)^a$   |  |  |  |
| 1                                                                                                                                                           | SnCl <sub>4</sub>  | $CH_2Cl_2$         | 0°C, 0.5 h                                          | 83 (>99/1) <sup>b</sup> |  |  |  |
| 2                                                                                                                                                           |                    | $Et_2O$            | $0^{\circ}\text{C},5\text{h}$ then rt, $16\text{h}$ | 6 (70/30)               |  |  |  |
| 3                                                                                                                                                           |                    | THF                | $0^{\circ}\text{C},20\text{h}$ then rt, $6\text{h}$ | — (—) <sup>c</sup>      |  |  |  |
| 4                                                                                                                                                           |                    | CH <sub>3</sub> CN | $0^{\circ}\text{C},20\text{h}$ then rt, $6\text{h}$ | — (—)                   |  |  |  |
| 5                                                                                                                                                           |                    | Toluene            | 0°C, 0.5 h                                          | 66 (83/17)              |  |  |  |
| 6                                                                                                                                                           | $TiCl_4$           | $CH_2Cl_2$         | 0°C, 0.5 h                                          | 3 (>99/1) <sup>b</sup>  |  |  |  |
| 7                                                                                                                                                           | $ZrCl_4$           |                    | 0 °C, 24 h                                          | 8 (68/32)               |  |  |  |
| 8                                                                                                                                                           | $BF_3 \cdot OEt_2$ |                    | $0{}^\circ C,5h$ then rt, $16h$                     | — (—)                   |  |  |  |

<sup>a</sup>Determined by integrals on <sup>1</sup>HNMR spectra.

<sup>b</sup>Only trans isomer was detected on <sup>1</sup>HNMR spectra.

<sup>c</sup>31% of starting material **1** was recovered.

vents using (cyclopropylmethyl)triisopropylsilane **1** and phenylglyoxal **2a** as substrates. It revealed that combination of SnCl<sub>4</sub> and CH<sub>2</sub>Cl<sub>2</sub> is the most favorable: **1**, **2a** (1.5 equiv.), and SnCl<sub>4</sub> (1.2 equiv.) in CH<sub>2</sub>Cl<sub>2</sub> gave *trans*-2-silylmethylated tetrahydrofuran **3a** in 83% yield (Table 1, Run 1)<sup>5,6</sup> but Lewis-basic medium such as ethers and acetonitrile resulted in low yield formation of the cycloadduct and no recovery of the starting materials (Runs 2–4). Other Lewis acids such as TiCl<sub>4</sub>, ZrCl<sub>4</sub>, and BF<sub>3</sub>• OEt<sub>2</sub> gave less satisfactory results (Runs 6–8).<sup>7,8</sup>

This reaction was applicable to various  $\alpha$ -keto aldehydes: not only **2a** but also heteroaromatic glyoxals and butyl glyoxylate afforded the corresponding trans products **3** as essentially single diastereomers (Table 2, Runs 1–9).<sup>9</sup> Less bulky dimethylphenylsilane **6** also furnished **3** in a good yield although homoallylation product was obtained in 16% yield (Run 11).<sup>10,11</sup>

Interestingly, silanes 1, 4, 5, and 6 reacted with aldehydes **2a–2h** at  $-78 \,^{\circ}$ C to afford *cis-3* preferentially (Table 3, Runs 1–11). These stereochemical reversals suggested that *cis-*3 were produced kinetically,<sup>12</sup> and at 0  $^{\circ}$ C, isomerized to *trans-3* thermodynamically. The speculation was supported by the fact that relative stereochemistry of a product was found to be trans when the reaction was carried out at  $-78 \,^{\circ}$ C and then warmed up to 0  $^{\circ}$ C (Run 12).

These stereochemical phenomena can be rationalized by the mechanism outlined below (Scheme 1): 1 undergoes nucleophilic addition to a  $SnCl_4$ -activated aldehyde 2 via antiperiplanar transition state in which silylmethyl group is oriented at less hin-

 Table 2. Trans-selective [3+2] cycloaddition

| $R_{3}^{1}Si$ + $H$ $R_{0}^{2}$ $R^{2}$ $\frac{1.2 \text{ equiv. SnCl}_{4}}{CH_{2}Cl_{2}, 0 \circ C}$ $R_{3}^{1}Si$ $R_{2}^{1}$ |                                      |                                            |         |                                         |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------|---------|-----------------------------------------|--|--|--|--|
|                                                                                                                                 | <b>1</b> , <b>4</b> , <b>5 2</b> 1.5 | 5 equiv.                                   | trans-3 |                                         |  |  |  |  |
| Run                                                                                                                             | SiR <sup>1</sup> <sub>3</sub>        | $\mathbb{R}^2$                             | Time/h  | $3/\% (trans/cis)^{a}$                  |  |  |  |  |
| 1                                                                                                                               | Si( <i>i</i> -Pr) <sub>3</sub> (1)   | Ph (2a)                                    | 0.5     | 83 ( <b>3a</b> ) (>99/1) <sup>b</sup>   |  |  |  |  |
| 2                                                                                                                               |                                      | 2-Naphthyl (2b)                            | 0.6     | 72 ( <b>3b</b> ) (99/1)                 |  |  |  |  |
| 3                                                                                                                               |                                      | 2-Furyl (2c)                               | 0.5     | 90 ( <b>3c</b> ) (>99/1) <sup>b</sup>   |  |  |  |  |
| 4                                                                                                                               |                                      | 2-Thienyl (2d)                             | 0.5     | 82 ( <b>3d</b> ) (>99/1) <sup>b</sup>   |  |  |  |  |
| 5                                                                                                                               |                                      | $4\text{-}MeOC_6H_4~(\textbf{2e})$         | 0.5     | 76 ( <b>3e</b> ) (>99/1) <sup>b</sup>   |  |  |  |  |
| 6                                                                                                                               |                                      | $4-ClC_{6}H_{4}$ (2f)                      | 0.5     | 68 ( <b>3f</b> ) (>99/1) <sup>b</sup>   |  |  |  |  |
| 7                                                                                                                               |                                      | $4-MeC_{6}H_{4}$ (2g)                      | 0.5     | 84 ( <b>3g</b> ) (>99/1) <sup>b</sup>   |  |  |  |  |
| 8                                                                                                                               | $Si(i-Pr)_2Ph(4)$                    | CO <sub>2</sub> <i>n</i> -Bu ( <b>2h</b> ) | 1.0     | 43 ( <b>3h</b> ) (>99/1) <sup>b</sup>   |  |  |  |  |
| 9                                                                                                                               |                                      | Ph (2a)                                    | 1.0     | 84 ( <b>3i</b> ) (97/3)                 |  |  |  |  |
| 10                                                                                                                              | $Si(t-Bu)Ph_2$ (5)                   | Ph (2a)                                    | 0.5     | 69 ( <b>3j</b> ) (59/41)                |  |  |  |  |
| 11                                                                                                                              | $SiMe_2Ph(6)$                        | Ph (2a)                                    | 1.0     | 56 ( <b>3k</b> ) (>99/1) <sup>b,c</sup> |  |  |  |  |

<sup>a</sup>Determined by integrals on <sup>1</sup>HNMR spectra.

<sup>b</sup>Only trans isomer was detected on <sup>1</sup>HNMR spectra.

<sup>c</sup>Homoallylation product was obtained in 16% yield.

Table 3. Cis-selective [3+2] cycloaddition<sup>a</sup>

| Run             | Silane | Aldehyde   | Time/h | $3/\% (trans/cis)^{b}$              |
|-----------------|--------|------------|--------|-------------------------------------|
| 1               | 1      | 2a         | 1.5    | Quant. (28/72, 3a)                  |
| 2               |        | 2b         | 1.0    | 89 (28/72, <b>3b</b> )              |
| 3               |        | 2c         | 1.0    | 87 (26/74, <b>3c</b> )              |
| 4               |        | 2d         | 1.0    | 57 (38/62, <b>3d</b> )              |
| 5               |        | 2e         | 2.0    | 66 (32/68, <b>3e</b> )              |
| 6               |        | 2 <b>f</b> | 1.8    | 71 (48/52, <b>3f</b> )              |
| 7               |        | 2g         | 1.0    | 85 (36/64, <b>3</b> g)              |
| 8               | 4      | 2h         | 18     | 54 (37/63, <b>3h</b> ) <sup>c</sup> |
| 9               |        | 2a         | 1.0    | 93 (32/68, <b>3i</b> )              |
| 10              | 5      | 2a         | 1.1    | 84 (33/67, <b>3j</b> )              |
| 11              | 6      | 2a         | 1.0    | 73 (31/69, <b>3k</b> ) <sup>d</sup> |
| 12 <sup>e</sup> | 1      | 2a         | 1.2    | 93 (>99/1, <b>3a</b> ) <sup>f</sup> |

<sup>a</sup>Silane:aldehyde:SnCl<sub>4</sub> = 1.0:1.5:1.2, CH<sub>2</sub>Cl<sub>2</sub>, -78 °C.

<sup>b</sup>Determined by integrals on <sup>1</sup>HNMR spectra.

<sup>c</sup>Approximately 0.4 equiv. of 4 was recovered.

<sup>d</sup>Homoallylation product was not obtained.

 $^{e}After$  confirming that 1 was consumed completely by a TLC analysis, temperature was raised up to 0  $^{\circ}C.$ 

<sup>f</sup>Only trans isomer was detected on <sup>1</sup>H NMR spectra.



Scheme 1. Plausible mechanism.

dered position. The resulting  $\beta$ -silyl cation intermediate **A** undergoes rotation and subsequent ring closure of the resulting rotamer **B** gives a *cis*-**3**/SnCl<sub>4</sub> complex **C** kinetically. Hydrolysis of **C** affords *cis*-**3**.

On the other hand, the kinetically formed intermediate C possesses bulky silylmethyl group on its concave face, and therefore, thermodynamically unstable. When the reaction was carried out at 0 °C or the temperature was raised up to 0 °C, thermodynamically unstable C thus undergoes ring opening and rotation to give D. Re-closing of D gives thermodynamically stable *trans*-complex E and hydrolysis of E affords *trans*-3.

In summary, we could develop novel [3+2] cycloaddition reaction of cyclopropylmethylsilanes with aldehydes. Relative stereochemistries of the products were dependent on the reaction temperatures: trans and cis diastereomers were obtained preferentially at  $0 \,^{\circ}$ C and  $-78 \,^{\circ}$ C, respectively.

## **References and Notes**

- For reviews, see: a) M. C. Elliott, J. Chem. Soc., Perkin Trans. 1, 2002, 2301. b) J.-C. Harmange and B. Figadère, Tetrahedron: Asymmetry, 4, 1711 (1993).
- a) T. Akiyama, K. Ishikawa, and S. Ozaki, *Chem. Lett.*, 1994, 627. b) T. Akiyama, T. Yasusa, K. Ishikawa, and S. Ozaki, *Tetrahedron Lett.*, 35, 8401 (1994). c) T. Akiyama and M. Suzuki, *Chem. Commun.*, 1997, 2357. See for cycloaddition reactions with α,β-unsaturated carbonyls: d) T. Akiyama, E. Hoshi, and S. Fujiyoshi, *J. Chem. Soc.*, *Perkin Trans. 1*, 1998, 2121. e) T. Akiyama and M. Yamanaka, *Tetrahedron Lett.*, 39, 7885 (1998). For reviews, see: f) C. E. Masse and J. S. Panek, *Chem. Rev.*, 95, 1293 (1995). g) H.-J. Knölker, *J. Prakt. Chem.*, 339, 304 (1997).
- 3 Cyclopropylmethylsilanes react with carbon electrophiles although examples are relatively scarce: a) M. Grignon-Dubois and J. Dunoguès, J. Organomet. Chem., 309, 35 (1986). b) M. Grignon-Dubois, J. Dunoguès, and R. Calas, Can. J. Chem., 59, 802 (1981). c) D. C. Braddock, D. M. Badine, T. Gottschalk, A. Matsuno, and M. Rodriguez-Lens, Synlett, 2003, 345.
- 4 V. K. Yadav and his coworkers have recently reported cycloaddition reaction of acceptor-substituted cyclopropylmethylsilanes. See: a) V. K. Yadav and N. V. Kumar, J. Am. Chem. Soc., **126**, 8652 (2004). b) V. K. Yadav and V. Sriramurthy, Angew. Chem., Int. Ed., **43**, 2669 (2004). c) V. K. Yadav and V. Sriramurthy, Org. Lett., **6**, 4495 (2004).
- 5 Relative stereochemistry of **3a** was determined by NOE experiment. Relative stereochemistries of other products except **3a** were determined by analogy on their <sup>1</sup>H NMR spectra.
- 6 This reaction requires stoichiometric amounts of SnCl<sub>4</sub>. Run with 0.3 equiv. of SnCl<sub>4</sub> resulted in 38% yield of **3a** (*cis/trans* = 3/7) and 51% recovery of **1** (CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 2 h).
- 7 None of homoallylation product was obtained in all the cases described in Table 1.
- 8 This reaction did not proceed by the act of HCl that is prepared from acetyl chloride and methanol in  $CH_2Cl_2$ (1:2a:HCl = 1.0:1.0:1.2,  $CH_2Cl_2$ , 0 °C, 0.5 h then rt, 1.0 h. 80% recovery of 1). HCl that was possibly generated from SnCl<sub>4</sub> is thus neglectable for the reaction course.
- 9 tert-Butyl(diphenyl)silane 5 exceptionally gave the corresponding product of approximately 6:4 diastereomer ratio. The reason is not clear but we suspect that it is due to eletronic effect of two phenyl groups on silicon atom.
- 10 Allylphenyldimethylsilane has the similar trend when reacted with  $\alpha$ -keto esters. See Ref. 2a.
- 11 Unfortunately, reactions with other carbonyl compounds such as benzaldehyde, 3-benzyloxypropionaldehyde, ethyl 2-oxo-2-phenylacetate, and 2,3-butanedione gave complex mixture. Fast metal exchange of cyclopropylmethylsilanes and SnCl<sub>4</sub> may be responsible: I. Ryu, H. Suzuki, S. Murai, and N. Sonoda, *Organometallics*, **6**, 212 (1987).
- 12 Reaction of **1** and **2a** at  $-100 \,^{\circ}\text{C}$  gave a diastereometric mixture of **3a** with essentially the same diastereomet ratio (**1:2a:**SnCl<sub>4</sub> = 1.0:3.0:1.2, CH<sub>2</sub>Cl<sub>2</sub>,  $-100 \,^{\circ}\text{C}$ , 6h. 69% yield, *trans/cis* = 26/74). This result suggests that the ratio of 3/7 reflects the ratio of kinetic constants of *trans*-cyclization and *cis*-cyclization.